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A variational approach to problems in quantum statistical mechanics is 
described and it is shown how to determine the best quasi-free approxima- 
tion to the equilibrium state. The relation between this approximation and 
the Bogoliubov approximation in superfluidity is discussed. 
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1. INTRODUCTION 

In the work reported here we discuss a variational approach to the deter- 
mination of the thermodynamic equilibrium state of an infinitely extended 
system of bosons. Essentially, the problem consists in determining which state 
of an algebra corresponds to a given form of the energy density. By making 
the idealization of infinite volume we are able to exploit the translation 
invariance of the system, and to avoid the severe technical problems of 
demonstrating the convergence of various volume-dependent sequences. The 
definitions we make for infinite systems are, of course, motivated by con- 
sideration of the finite case. 

Variational methods have been considered by several authors. Valatin 
and Butler a/ and Girardeau and Arnowitt, ~2~ among others, have used a 
variation over a set of trial wave functions. Robinson ~3~ and Ruelle ~4~ have 
discussed the problem in a more algebraic setting. ~varc ~5~ has formulated the 
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problem algebraically for a lattice system; we describe the boson problem in 
an analogous way. Robinson (6~ used a variational calculation to approximate 
the ground state (zero temperature) of a boson gas by a "quasi-free" state. 
We generalize his work to the excited states (nonzero temperature) and show 
how the quasi-free approximation is related to the Bogoliubov approxima- 
tion. (7~ For Fermi lattice systems, Fannes and Verbeure (8) have described a 
model in which the quasi-free approximation and the variational principle 
yield the Gibbs state. 

In Section 2 we assemble the mathematical structures we require and 
formulate the variational principle. In Section 3 we discuss the quasi-free 
approximation and exhibit the equations resulting from a variation over the 
quasi-free states. In Section 4 we make a further approximation and show 
that the resulting state is identical to that derived from the Bogoliubov 
approximation. We conclude in Section 5 with a few brief remarks about the 
problem. 

2. T H E  V A R I A T I O N A L  P R I N C I P L E  

A boson system may be described by means of a field ~b(x) and its 
conjugate ~b*(x) assumed to satisfy the following commutation relations: 

= = 0 
( 1 )  

[4~(x), ~*(y)] = ~(x - y) 

Because of the singular nature of these relations, it is usual to introduce the 
smeared fields 

= ax, 4,*(h) = i ax  (2 )  
, )  ! 

where h is in some space M of test functions. We then have 

[~(hl), q,*(h2)] = (hi ,  h2) (3) 

where (hz, h2) = f hl(x)h2(x) dx. Let 

W(h) = exp{2-1'2i[~(h) + ~*(h)]} (4) 

Then the commutation relations (1) and (3) are formally equivalent to 

W(hl) W(h2) = [exp(-�89 Im(hl ,  h2))] W(hl + h2) (5) 

The product law (5) and certain technical conditions provide the starting 
point for mathematically rigorous discussions of the canonical commutation 
relations and boson systems. Equations (1)-(4) are regarded as heuristic 
justification for (5) since ~b(h) and ~b*(h) cannot be realized as bounded 
operators for which (4) holds as a strict identity (see Refs. 9 and 22). 
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The algebra we require is the C*-algebra d(M)  generated by the set 
{ W(h): h c M}. We omit the details of its construction but remark that it is 
independent of the representation of (5) used to construct it. (1~ 

A state on d ( M )  is a continuous, positive, linear functional ,~: d ( M )  --~ C 
such that ~o(1)= 1. It determines and is determined by a functional 
/x: M - +  C defined by 

~(h) --- ~o(W(h)) (6) 

/x is called the generating functional of the state. Araki (z2) and Segal (9) have 
provided a characterization of generating functionals. 

To discuss an infinitely extended boson system, we take M to be a dense 
subspace of L2(N a) (usually the space Co ~ of infinitely differentiable functions 
that vanish outside a finite region(13 0. We restrict our attention to the 
Euclidean-invariant states on d ( M )  (i.e., those states whose generating 
functionals are invariant under the action of the Euclidean group) because 
we assume that the interaction between the particles is Euclidean-invariant. 
This means that the problem of the spontaneous breaking of Euclidean 
symmetry must be discussed separately. The other important physical 
restriction that we impose is that the states be locally normal. (a) These states 
are such that a finite volume contains only a finite number of particles. (14~ 
Let 

~: = {Euclidean-invariant, locally normal states on d ( M ) }  

We assume that the interaction between the particles is mediated by a 
two-body (Euclidean-invarian 0 potential V(x - y) so that the Hamiltonian 
H has the following formal expression: 

H = � 8 9  ~*(x)(-V2)%(x)dx + �89 ~b*(x)~b*(y)V(x -y)~(y)%(x)dx ay (7) 

In the conventional approach to statistical mechanics the integrals in (7) are 
restricted to a finite volume A so that the resulting Hamiltonian HA can be 
interpreted as an operator on Fock space. The generating functional of the 
grand canonical Gibbs state can, in theory, be computed and the thermo- 
dynamic limit taken. This program has had very limited success (zs,16) because 
of the severe technical difficulties involved. 

The alternative approach that we adopt is to omit the finite-volume step 
and perform all calculations ~ the thermodynamic limit," thus obviating 
the need to take this limit. We use a variational principle which we now 
describe. It is based on the exploitation of the Euclidean invariance. 

According to gvarc, (~) Robinson, ~3> and Ruelle, (~) we can define a particle 
density functional 37:6 --~ N and an entropy density functional S: s c -§ 
which are consistent with the local normality and with the usual (finite-volume) 



384 R.H.  Critchley and A. I. Solomon 

definitions of particle number and entropy. Similarly, for each Euclidean- 
invariant formal Hamiltonian H we can define an energy density functional 
H:  ~: ~ IR. (For a fuller discussion of this see Robinson. (3~) The variational 
principle states that the thermodynamic equilibrium state of the (infinite) 
system at temperature T and density p is the state ~o e ~: that minimizes the 
free energy density 

F(w) = J7(r - Tg(r (8) 

subject to iV(w) = p. We note that there is no reason to believe that the state 
so determined is unique. Indeed, the grand canonical state (is) and the 
canonical state (~a) of the free boson gas are different at low temperatures but 
have the same (minimizing) free energy density. 

It remains an open question whether this variational principle determines 
the same state, or even the same thermodynamics, as the usual approach (for 
a discussion of this see Ruelle (4) and Robinson(a~). 

In order to use the variational principle to discuss particular systems, it is 
necessary to have explicit expressions for the densities F(co) and ~V(o~). For a 
particular class of states (the quasi-free states) these are obtainable and so, 
by minimizing the free energy density functional over these states, we deter- 
mine the best quasi-free approximation to the equilibrium state. 

3. T H E  Q U A S I - F R E E  A P P R O X I M A T I O N  

In principle, one can define the value of products of the smeared fields in 
the state oJ by differentiating the generating functional; for example, 

~2 z2h21[2)tz(zlhl + z2h2)]~l=z~=0 c~(~b*(hl)~b(h2)) = 2 ~ [exp(~/ 'z lh l  + 

(9) 
The truncation cor of w is defined recursively by 

~o(r = o~@(h)); ~(~*(h)) = o~@*(h)) 

co@(hl)dg(h2) ) = wr(~b(h~)~b(h2) ) + r ) (10) 

~(r162 = ~ ~o~(~*(hl)...).-.~(...) 
P 

where the sum ~v is taken over all partitions of 

{r .-. ~(h~ + m)} 

and the order of the elements within each part of the partition is taken over 
from the left-hand side. 

The state ~o is said to be quasi-free (6~ if 
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for n + m >f 3; that is, o~(~b*(hl) ... ~b(h,+~)) is just a sum of products of the 
one- and two-point truncated functions. The quasi-free states are the only 
states having the property of being determined by a finite number of 
functions. (11~ 

The generating functional of a quasi-free state can be obtained from the 
following formal identity: 

log w(W(h)) = --~ llhll 2 + ~ \ - ~ ]  m! n! o,~(r ~,*(h)~b(h) .~)b(h 0 
m n 

If  oJ is quasi-free, there is no convergence problem and so this gives 

1 h 2 w(W(h)) exp(-~!  I ]1 ) exp{(i/~/2)[WT@*(h) + Wr(~b(h))] 
- � 8 9  

-�88 + o)r(~*(h)~*(h))]} (12) 

Let 

Q = {quasi-flee states in ~:} 

The physically important correlation functions or reduced density 
matrices are defined using (2). For example, @*(x)~b(y)) is extracted from (9) 
as follows: 

? 

w(~*(hz)~(h2)) = j hl(x)@*(x)~b(y))h2(y) dx dy 

If  co is Euclidean-invariant, then @*(x)~b(y)) and @*(x)~*(y)) are functions 
of Ix - y[, and @(x)) is independent ofx.  Thus the quasi-free state o) ~ Q is 
completely determined by the following functions: 

(~ (x)>  = ~; ( # ( x ) >  = ~ (13) 

( # ( x ) r  = (#(x)~, (y) )~ .  + <~,*(x))~(C,(y)>~ 

= f (x  - y) + [c~[ 2 (14) 

(~ (x )~ (y ) )  = g(x  - y )  + ~ ;  ( # ( x ) # ( y ) >  = g(x  - y )  + ~ (15) 

where c~ is a complex number, f is a real-valued function, and g is a complex- 
valued function, both depending only on Ix - Yl. The expression @*(x)~b(y)) r 
is the kernel of the corresponding truncation cot. Robinson (6~ showed that 
two funct ionsfand g determine a quasi-free state as in (13)-(15) if and only if 

f(F) /> d(p) /> 0 (16) 

where the caret denotes the Fourier transform and d(p) is defined by 

[d(p) + �89 = [f(p) + �89 - [~(p)] 2 (17) 
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The thermodynamic functionals that we require for the variational 
principle are as follows. The particle density functional ~V: Q --~ R is 

f , N(~) - @*(x)~b(x)> = f(0) + la[ 2 = f(p)-~-~ + [a[ 2 (18) 

Similarly the kinetic energy density functional K: Q --+ R is 

R(w) = f ~f(p)  dp (19) (2~) 3 

Generalizing a result of Critchley and Lewis, ~1v,18) we show in the appendix 
that the entropy density functional S: Q -+ ~ is given by 

S(o~) = f {[1 + d(p)] log[1 + d(p)] - d(p)log ~(p)} (2zrdP)a (20) 

The only thermodynamic quantity that depends on the interaction is the 
potential energy density functional V: Q -+ R. It is given by 

V(o 0 --- �89 f @*(0)~b*(x)~b(x)~b(0)) V(x) dx (21) 

Using the quasi-free nature of the state r and Eqs. (13)-(15), we obtain for 
this 

dp ~2 
+ - ~ f ~ ( P ) P ( P ) ( - ~ ) a  + ~ f  s dp (2~) ~ 

+ ~ f f(p)~(p _ q)f(q) dp dq 
(2r a (2r a 

1 f dp dq (22) + ~ ~(p)19(p - q)~,(q) (2r (2r a 

The free energy density 

F(o0  = R(~,) + ~(~,) _ r~e(~,) 

can now be minimized over Q and the best quasi-free approximation to the 
equilibrium state obtained. We take account of the condition iV(r = p by 
means of the Lagrange multiplier y, and determine the equilibrium state by 
minimizing 

~(,,,) = if(w) - V(ff(a,) - p) (23) 

with respect to the variables I~I, ~b = arg ~2, ~(p) = argO(p) - q~, f(p), 
[g(P)l, and y. With qS(p) defined in this way it is clear that F(eo) is independent 
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of~b, and this quantity will be undetermined. For convenience we take it equal 
to zero. To take account of the positive-definiteness conditions (16) we 
minimize F(w) with respect to the alternative set u2, ~(p), f(p),  fi(p), and y. 
The equations resulting from the variation 8~-(w) are 

0 ~  
&---~ = (f ,  V) + Re(g, V) + _N(o))12(0) - ~, = 0 (24) 

&Y" - Im{~,(p)[c~zI;'(p) + f 12(p - q)g(q) (-~)a]} = O (25) O~(p) 

(2~.)a 0 ~  p2 
Of(p) 2 

+ 

+ + + f f(q)t2(p - q) a y 

aq 

{ [ f 'q]} 0 5  d(p) + �89 Re ~,(p) ~212(p) + 12(p - q ) )q )  
(2")~ aa(p-----j = I~(p) l = 

- T l o g ( l  + a ( ~ ) = 0  

= 0  

(26) 

(27) 

97' = p - N(~) = 0 (28) 

The solution to this set of equations, provided it exists and is a global 
minimum, determines the canonical equilibrium quasi-free state. However, it 
is possible that no solution to this set exists; for example, for the free boson 
gas (V = 0) Eq. (27) becomes 

~a(p) - (2,~) 3 log 1 + 

This is negative since 0 ~< a(p) <~ f(p),  and so the minimum of ~(c~) occurs 
on the hyperplane d(p) = f(p).  It is not determined by solving (24)-(28), 
since this set of equations has no solution, but by solving the analogous 
equations produced by a variation over the trial states with g = 0. This is an 
approximation considered by Critchley, (~3) who shows that for the free boson 
gas this procedure gives the thermodynamic limit of the canonical Gibbs 
state. 

Similar equations to (24)-(28) have also been derived by Robinson (e) in 
his discussion of the quasi-free approximation to the ground state (T = 0) of 
a boson system. 

In the next section we make a further approximation; we assume that 
the quantitiesf(p) and ~(p) are "small," so that we may drop second-order 
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terms in the potential energy density. This simplifies our variational equations 
to exactly soluble form. A comparison of the generating functional thus 
obtained with that resulting from the Bogoliubov approximation shows that 
the two approximations are equivalent. 

4. T H E  B O G O L I U B O V  A P P R O X I M A T I O N  

Retaining only those terms linear in f(p) and ~(p) in the expression for 
the potential energy density (22), we obtain the following simplified forms of 
(24)-(28)" 

p2 
2 - - 7 + ~2~(o)  + ~ r  + - -  

( f ,  V )  + R e ( g ,  V )  + ~V(oJ)I2"(0) - y = 0 

Im{g(p)c~2V(p)} = 0 

f(p) + �89 [g(P) l 2 Re{~(p)c~2/2(p)} = 0 

d(p) + �89 [ 
]~(p)[~ Re{~(p)~21P(p)} = T l o g ~ l  

(29) 

(30) 

(31) 

(32) 

o = ~2 + j f ( p )  (2~3 

(33) 

From (32) and (30) we see that ~ -r 0 and 

fi,(p)lP(p) < 0 

Using (17), we introduce O(p) defined by 

[d(p) + 3] cosh O(p) = f ( p )  + �89 [d(p) + 3] sinh O(p) = -fi,(p) 

(the conventional minus sign ensures positive 0 for positive 12). 
Equations (31) and (32) now become 

a z 12(p) coth O(p) = e(p) 
where 

4 p )  = �89 - 7 + ~(0)~ 2 + ~ ( p ) ~  

~212(p) cosech O(p) = T log[1 + (1/d(p)] 

Eliminating O(p) between (36) and (38), we obtain 

a (p )  = (e ~E(~ - 1)-  

and 

E(p) = [4p) 2 - ~,':(p)211:2 

where 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 
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We may obta inf(p)  and ~(p) from (35), (36), and (39), and then 7' and a are 
determined from (29) and (33). 

From (36) we note that for a solution to exist we must have 

]~(P)I /> a~t V(p)I (41) 

For a positive-type potential [l~(p) /> 0], (41) holds if 

-~, + ~ ( 0 )  /> 0 

Using (12), we can now write down the generating functional of the 
quasi-free state determined by this system of equations. It is 

/z(h) = e x p ( - ~  IlhU ~) e x p { ~  [/~(0) + Z;(o)] 

1 dp 
+ ~. [cosh O(p) - 1]} (2~r)3 

+ ~ f  [ h ( - p ) ~ ( p ) +  ~(-p)~(p)][Ct(p)+ ~] sinh O ( p ) ~ }  (42) 

We do not investigate whether this state is the best quasi-free state. This 
requires a detailed investigation of the behavior of  ff(o 0,  particularly on the 
boundary. 

We now show how this is related to the Bogoliubov approximation by 
calculating the generating functional corresponding to the latter. Bogoliubov's 
prescription (7) was that at low temperatures a weakly interacting Bose system 
could be described by a truncated Hamiltonian 

+ �89 ~ 12(k)(cz2a~*a*~ + ~2a~a_~) (43) 
kq~O 

where e~ is the kinetic energy of the kth level and ]~] 2 is the density of particies 
in the ground state. HB describes the excited particles; we follow Ginibre (1~) 
and assume that the ground-state particles are described by a coherent state. 
More precisely, if the system is in volume A, we define ho ~L2(A) by 
ho(x) = [A] -1/2 and let ~o be the Fock space constructed on the one- 
dimensional Hilbert space spanned by ho, and ~ '  be the Fock space con- 
structed on the orthogonal complement A' of h0 in the one-particle space 
L2(A). The equilibrium state of the system is described by the following 
density matrix on the Fock space ~ = ~o  | J~ ' :  

PB = ]~}(~1 | {exp[--/~(HB -- 7N')]}{tr exp[--/g(HB -- ),N')]} -1 (44) 

where [~} is the coherent state 

Is) = exp - ~  I~[ 2 c~'~ 
o ~ (a~ 
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(f2 is the vacuum state in ~o and ao* is the operator that creates a ground- 
state particle). N '  is the number operator on J r '  and 7' is a Lagrange multiplier 
determined by fixing the total particle density. HB -- 7N'  can be diagonalized 
by a transformation of the operators aR, aR* ~ b~, b~* (for the details see, 
for example, Solomon(2~ the elementary excitations have energy spectrum 
{ER}, a discrete form of (40) with, in (37), lp2 replaced by e~. The same 
transformation can be applied to W(h); it is equivalent to a transformation 
R: A' -+ A'. Thus we can calculate the generating functional using the usual 
Fock space methods(21'18~: 

tr'{exp[--fi(HB -- 7N ' )  I W(h')} 

tr'[exp(-/3 • E~b~*bR)W(Rh')] 
= <~1 w(h(0))l~> tr' exp(-/3 Z E~bR*b~) 

= exp ( - ~ l ],h(0) 11 ~) exp ( -~1 IIRh' 1[= ) 

x exp [ah(0) + N(0)] - 2IA---~ ~ [Rh'(k)?a,~ (45) 

where dR is a discrete form of (39), and h = /)(0) @ h'. But as can readily be 
checked 

R~h'(k) = e-*r cosh(�89 - e*r189 (46) 

where r = arg a2 and 0R is a discrete form of (36). Substituting (46) into (45), 
we see that ~n(h) is a discrete (i.e., finite-volume) form of (42). This establishes 
the connection between the two approximations and justifies our calling the 
first " the Bogoliubov approximation." 

5. C O N C L U S I O N  

The generating functional (42) may be regarded as the exact solution of 
the Bogoliubov problem given the assumption that the ground-state particles 
are described by a coherent state. In this note we have shown that this 
generating functional results from a variational principle based on minimizing 
an appropriate free energy functional over the class of quasi-free states. This 
approach draws attention to some of the problems of the Bogoliubov approxi- 
mation. For example, the approximations made in deriving (42) (e.g., quasi- 
free state, linearized potential energy density functional) seem considerable, 
but in this formulation it may be possible to estimate their effect. Furthermore, 
although (42) may be a local minimum ofF(co) (co E Q), it may not be a global 
minimum. There may be a point on the boundary [for example, the boundary 
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d(p) = f(p)]  which gives a lower value of the free energy density. We do not 
discuss this any further here, but a similar problem has been considered by 
Critchley (2a~ in an example. 

Finally we note that it may be possible to achieve a better quasi-free 
approximation by substituting a perttlrbation of the Bogoliubov solution into 
Eqs. (24)-(28). 

A P P E N D I X .  E N T R O P Y  D E N S I T Y  

In this appendix we discuss the definition (20) of the entropy density of 
the quasi-free state determined by (I3)-(I5). This state has generating 
functional 

/,(h) = exp(  - 1  ,Jail Q exp{[@-~ (~h(0)+ ~(0))  1 - ~y ]h(p)I2f(p) dp (2rr) a 

@ 

and 

For the case a -- 0, this can be diagonalized as I~D(Rh), where 
. / ' x  

Rh(p) = [cosh-~0(p)],~(p) + e~P~[sinh �89 

(A.1) 

(a.2) 

~D(h) = exp( - -~  llhI] 2) exp{-}flh(p)]2,~(p)(2@)~} (A.3) 

where d(p) is as defined in (17), r = arg ~(p), and O(p) >1 0 is defined by 

f(p) + �89 = [~(p) + 31 cosh O(p) 
l~(P)t = [d(P) + 31 sinh O(p) 

We show that at the finitewolume level, the states determined by /xD and 
(suitably restricted) are related by a unitary transformation. Since the entropy 
is invariant under such transformations, we will take S ( ~ ) =  S(/zD). But 
according to Critchley and Lewis (17) 

&/zD) = f {[1 + d(p)] log[1 + d(p)l - d(p) log d(p)} (27rdP)a (A.4) 

as required by (20). They justified this by constructing a sequence of density 
matrices {p.} and a corresponding sequence of finite volumes {A,} such that: 

1. p, is a density operator on the Fock space F(L2(A,)). 
2. {A~} is an unbounded increasing sequence of volumes. 
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3. lim~_~ ~o tr (~) W(h)p,~ = t~D(h). 
4. l imn_~{[-- t r  (n) pn log pn]/iA~t} 

-- f{[1 + ~(p)l log[1 + d(p)] - d(p) log d(p))[dp/(27r)a]. 

[Their p roof  requires technical assumptions to be made about  a(p), but it is 
thought  that  the result (A.4) holds even when the assumptions do not. 
Because of  the heuristic nature o f  the present work, we omit further discussion 
of  these technical considerations.] 

We now exhibit a unitary operator  Un on F(L2(A~)) such that  p~' = 
Un*pn U~ is a density operator  on F(L2(An)) for which (at least heuristically) 

p~(h) = lim tr <"> W(h)pn' (A.5) 
n - - *  oo 

As in Section 4 we use subscripts to denote the restriction o f  the functions 
O(p), r etc., to  a finite-volume index set [corresponding to the eigenvalues 
of  the Laplacian in L2(A,) with periodic boundary  conditions]. Let 

where 

V n =  e x p [ i ~  OkJ(~ n)] (A.6) 

J~") = �89162 *a*- k -- e-ir ~) 

then (compare with Solomon~2~ for h a L2(A~) 

V, W(h) V~* = W(Rh) 

So that  l i m , . ~  tr{W(h)V,*p~V,} = t~D(Rh). Thus for the case a = 0, we may 

take U, = Vn. 
N o w  when a # 0 we define Yn E L2(An) by 

where Xn is the characteristic function o f  An; then 

W @ , ) W ( h ) W ( - T n )  = {exp[(i/~/2)(c~(h, X~> + ff<Xn, h>)]}W(h) 

So take U, = VnW(y,) and p , '  = Un*p, Un. Then (A.5) holds and 

S(p,') = - tr<n)(p, ' log p j )  = - tr<~(p, log p,) = S(pn) 
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